libqbe/tools/mgen/fuzz.ml
Quentin Carbonneaux a609527752 mgen: match automatons and C generation
The algorithm to generate matchers
took a long time to be discovered
and refined to its present version.
The rest of mgen is mostly boring
engineering.

Extensive fuzzing ensures that the
two core components of mgen (tables
and matchers generation) are correct
on specific problem instances.
2024-04-09 21:45:42 +02:00

413 lines
12 KiB
OCaml

(* fuzz the tables and matchers generated *)
open Match
module Buffer: sig
type 'a t
val create: ?capacity:int -> unit -> 'a t
val reset: 'a t -> unit
val size: 'a t -> int
val get: 'a t -> int -> 'a
val set: 'a t -> int -> 'a -> unit
val push: 'a t -> 'a -> unit
end = struct
type 'a t =
{ mutable size: int
; mutable data: 'a array }
let mk_array n = Array.make n (Obj.magic 0)
let create ?(capacity = 10) () =
if capacity < 0 then invalid_arg "Buffer.make";
{size = 0; data = mk_array capacity}
let reset b = b.size <- 0
let size b = b.size
let get b n =
if n >= size b then invalid_arg "Buffer.get";
b.data.(n)
let set b n x =
if n >= size b then invalid_arg "Buffer.set";
b.data.(n) <- x
let push b x =
let cap = Array.length b.data in
if size b = cap then begin
let data = mk_array (2 * cap + 1) in
Array.blit b.data 0 data 0 cap;
b.data <- data
end;
let sz = size b in
b.size <- sz + 1;
set b sz x
end
let binop_state n op s1 s2 =
let key = K (op, s1, s2) in
try StateMap.find key n.statemap
with Not_found -> atom_state n Tmp
type id = int
type term_data =
| Binop of op * id * id
| Leaf of atomic_pattern
type term =
{ id: id
; data: term_data
; state: p state }
let pp_term fmt (ta, id) =
let fpf x = Format.fprintf fmt x in
let rec pp _fmt id =
match ta.(id).data with
| Leaf (Con c) -> fpf "%Ld" c
| Leaf AnyCon -> fpf "$%d" id
| Leaf Tmp -> fpf "%%%d" id
| Binop (op, id1, id2) ->
fpf "@[(%s@%d:%d @[<hov>%a@ %a@])@]"
(show_op op) id ta.(id).state.id
pp id1 pp id2
in pp fmt id
(* A term pool is a deduplicated set of term
* that maintains nodes numbering using the
* statemap passed at creation time *)
module TermPool = struct
type t =
{ terms: term Buffer.t
; hcons: (term_data, id) Hashtbl.t
; numbr: numberer }
let create numbr =
{ terms = Buffer.create ()
; hcons = Hashtbl.create 100
; numbr }
let reset tp =
Buffer.reset tp.terms;
Hashtbl.clear tp.hcons
let size tp = Buffer.size tp.terms
let term tp id = Buffer.get tp.terms id
let mk_leaf tp atm =
let data = Leaf atm in
match Hashtbl.find tp.hcons data with
| id -> term tp id
| exception Not_found ->
let id = Buffer.size tp.terms in
let state = atom_state tp.numbr atm in
Buffer.push tp.terms {id; data; state};
Hashtbl.add tp.hcons data id;
term tp id
let mk_binop tp op t1 t2 =
let data = Binop (op, t1.id, t2.id) in
match Hashtbl.find tp.hcons data with
| id -> term tp id
| exception Not_found ->
let id = Buffer.size tp.terms in
let state =
binop_state tp.numbr op t1.state t2.state
in
Buffer.push tp.terms {id; data; state};
Hashtbl.add tp.hcons data id;
term tp id
let rec add_pattern tp = function
| Bnr (op, p1, p2) ->
let t1 = add_pattern tp p1 in
let t2 = add_pattern tp p2 in
mk_binop tp op t1 t2
| Atm atm -> mk_leaf tp atm
| Var (_, atm) -> add_pattern tp (Atm atm)
let explode_term tp id =
let rec aux tms n id =
let t = term tp id in
match t.data with
| Leaf _ -> (n, {t with id = n} :: tms)
| Binop (op, id1, id2) ->
let n1, tms = aux tms n id1 in
let n = n1 + 1 in
let n2, tms = aux tms n id2 in
let n = n2 + 1 in
(n, { t with data = Binop (op, n1, n2)
; id = n } :: tms)
in
let n, tms = aux [] 0 id in
Array.of_list (List.rev tms), n
end
module R = Random
(* uniform pick in a list *)
let list_pick l =
let rec aux n l x =
match l with
| [] -> x
| y :: l ->
if R.int (n + 1) = 0 then
aux (n + 1) l y
else
aux (n + 1) l x
in
match l with
| [] -> invalid_arg "list_pick"
| x :: l -> aux 1 l x
let term_pick ~numbr =
let ops =
if numbr.ops = [] then
numbr.ops <-
(StateMap.fold (fun k _ ops ->
match k with
| K (op, _, _) -> op :: ops)
numbr.statemap [] |> setify);
numbr.ops
in
let rec gen depth =
(* exponential probability for leaves to
* avoid skewing towards shallow terms *)
let atm_prob = 0.75 ** float_of_int depth in
if R.float 1.0 <= atm_prob || ops = [] then
let atom, st = list_pick numbr.atoms in
(st, Atm atom)
else
let op = list_pick ops in
let s1, t1 = gen (depth - 1) in
let s2, t2 = gen (depth - 1) in
( binop_state numbr op s1 s2
, Bnr (op, t1, t2) )
in fun ~depth -> gen depth
exception FuzzError
let rec pattern_depth = function
| Bnr (_, p1, p2) ->
1 + max (pattern_depth p1) (pattern_depth p2)
| Atm _ -> 0
| Var (_, atm) -> pattern_depth (Atm atm)
let ( %% ) a b =
1e2 *. float_of_int a /. float_of_int b
let progress ?(width = 50) msg pct =
Format.eprintf "\x1b[2K\r%!";
let progress_bar fmt =
let n =
let fwidth = float_of_int width in
1 + int_of_float (pct *. fwidth /. 1e2)
in
Format.fprintf fmt " %s%s %.0f%%@?"
(String.concat "" (List.init n (fun _ -> "")))
(String.make (max 0 (width - n)) '-')
pct
in
Format.kfprintf progress_bar
Format.err_formatter msg
let fuzz_numberer rules numbr =
(* pick twice the max pattern depth so we
* have a chance to find non-trivial numbers
* for the atomic patterns in the rules *)
let depth =
List.fold_left (fun depth r ->
max depth (pattern_depth r.pattern))
0 rules * 2
in
(* fuzz until the term pool we are constructing
* is no longer growing fast enough; or we just
* went through sufficiently many iterations *)
let max_iter = 1_000_000 in
let low_insert_rate = 1e-2 in
let tp = TermPool.create numbr in
let rec loop new_stats i =
let (_, _, insert_rate) = new_stats in
if insert_rate <= low_insert_rate then () else
if i >= max_iter then () else
(* periodically update stats *)
let new_stats =
let (num, cnt, rate) = new_stats in
if num land 1023 = 0 then
let rate =
0.5 *. (rate +. float_of_int cnt /. 1023.)
in
progress " insert_rate=%.1f%%"
(i %% max_iter) (rate *. 1e2);
(num + 1, 0, rate)
else new_stats
in
(* create a term and check that its number is
* accurate wrt the rules *)
let st, term = term_pick ~numbr ~depth in
let state_matched =
List.filter_map (fun cu ->
match cu with
| Top ("$" | "%") -> None
| Top name -> Some name
| _ -> None)
st.point |> setify
in
let rule_matched =
List.filter_map (fun r ->
if pattern_match r.pattern term then
Some r.name
else None)
rules |> setify
in
if state_matched <> rule_matched then begin
let open Format in
let pp_str_list =
let pp_sep fmt () = fprintf fmt ",@ " in
pp_print_list ~pp_sep pp_print_string
in
eprintf "@.@[<v2>fuzz error for %s"
(show_pattern term);
eprintf "@ @[state matched: %a@]"
pp_str_list state_matched;
eprintf "@ @[rule matched: %a@]"
pp_str_list rule_matched;
eprintf "@]@.";
raise FuzzError;
end;
if state_matched = [] then
loop new_stats (i + 1)
else
(* add to the term pool *)
let old_size = TermPool.size tp in
let _ = TermPool.add_pattern tp term in
let new_stats =
let (num, cnt, rate) = new_stats in
if TermPool.size tp <> old_size then
(num + 1, cnt + 1, rate)
else
(num + 1, cnt, rate)
in
loop new_stats (i + 1)
in
loop (1, 0, 1.0) 0;
Format.eprintf
"@.@[ generated %.3fMiB of test terms@]@."
(float_of_int (Obj.reachable_words (Obj.repr tp))
/. 128. /. 1024.);
tp
let rec run_matcher stk m (ta, id as t) =
let state id = ta.(id).state.id in
match m.Action.node with
| Action.Switch cases ->
let m =
try List.assoc (state id) cases
with Not_found -> failwith "no switch case"
in
run_matcher stk m t
| Action.Push (sym, m) ->
let l, r =
match ta.(id).data with
| Leaf _ -> failwith "push on leaf"
| Binop (_, l, r) -> (l, r)
in
if sym && state l > state r
then run_matcher (l :: stk) m (ta, r)
else run_matcher (r :: stk) m (ta, l)
| Action.Pop m -> begin
match stk with
| id :: stk -> run_matcher stk m (ta, id)
| [] -> failwith "pop on empty stack"
end
| Action.Set (v, m) ->
(v, id) :: run_matcher stk m t
| Action.Stop -> []
let rec term_match p (ta, id) =
let (|>>) x f =
match x with None -> None | Some x -> f x
in
let atom_match a =
match ta.(id).data with
| Leaf a' -> pattern_match (Atm a) (Atm a')
| Binop _ -> pattern_match (Atm a) (Atm Tmp)
in
match p with
| Var (v, a) when atom_match a ->
Some [(v, id)]
| Atm a when atom_match a -> Some []
| (Atm _ | Var _) -> None
| Bnr (op, pl, pr) -> begin
match ta.(id).data with
| Binop (op', idl, idr) when op' = op ->
term_match pl (ta, idl) |>> fun l1 ->
term_match pr (ta, idr) |>> fun l2 ->
Some (l1 @ l2)
| _ -> None
end
let test_matchers tp numbr rules =
let {statemap = sm; states = sa; _} = numbr in
let total = ref 0 in
let matchers =
let htbl = Hashtbl.create (Array.length sa) in
List.map (fun r -> (r.name, r.pattern)) rules |>
group_by_fst |>
List.iter (fun (r, ps) ->
total := !total + List.length ps;
let pm = (ps, lr_matcher sm sa rules r) in
sa |> Array.iter (fun s ->
if List.mem (Top r) s.point then
Hashtbl.add htbl s.id pm));
htbl
in
let seen = Hashtbl.create !total in
for id = 0 to TermPool.size tp - 1 do
if id land 1023 = 0 ||
id = TermPool.size tp - 1 then begin
progress
" coverage=%.1f%%"
(id %% TermPool.size tp)
(Hashtbl.length seen %% !total)
end;
let t = TermPool.explode_term tp id in
Hashtbl.find_all matchers
(TermPool.term tp id).state.id |>
List.iter (fun (ps, m) ->
let norm = List.fast_sort compare in
let ok =
match norm (run_matcher [] m t) with
| asn -> `Match (List.exists (fun p ->
match term_match p t with
| None -> false
| Some asn' ->
if asn = norm asn' then begin
Hashtbl.replace seen p ();
true
end else false) ps)
| exception e -> `RunFailure e
in
if ok <> `Match true then begin
let open Format in
let pp_asn fmt asn =
fprintf fmt "@[<h>";
pp_print_list
~pp_sep:(fun fmt () -> fprintf fmt ";@ ")
(fun fmt (v, d) ->
fprintf fmt "@[%s←%d@]" v d)
fmt asn;
fprintf fmt "@]"
in
eprintf "@.@[<v2>matcher error for";
eprintf "@ @[%a@]" pp_term t;
begin match ok with
| `RunFailure e ->
eprintf "@ @[exception: %s@]"
(Printexc.to_string e)
| `Match (* false *) _ ->
let asn = run_matcher [] m t in
eprintf "@ @[assignment: %a@]"
pp_asn asn;
eprintf "@ @[<v2>could not match";
List.iter (fun p ->
eprintf "@ + @[%s@]"
(show_pattern p)) ps;
eprintf "@]"
end;
eprintf "@]@.";
raise FuzzError
end)
done;
Format.eprintf "@."