libqbe/tools/match_test.ml
Quentin Carbonneaux 56e2263ca4 fuse ac rules in ins-tree matching
The initial plan was to have one
matcher per ac-variant, but that
leads to way too much generated
code. Instead, we can fuse ac
variants of the rules and have
a smarter matching algorithm to
recover bound variables.
2024-04-09 21:34:57 +02:00

97 lines
2.8 KiB
OCaml

#use "match.ml"
let test_pattern_match =
let pm = pattern_match
and nm = fun x y -> not (pattern_match x y) in
begin
assert (nm (Atm Tmp) (Atm (Con 42L)));
assert (pm (Atm AnyCon) (Atm (Con 42L)));
assert (nm (Atm (Con 42L)) (Atm AnyCon));
assert (nm (Atm (Con 42L)) (Atm Tmp));
end
let test_peel =
let o = Kw, Oadd in
let p = Bnr (o, Bnr (o, Atm Tmp, Atm Tmp),
Atm (Con 42L)) in
let l = peel p () in
let () = assert (List.length l = 3) in
let atomic_p (p, _) =
match p with Atm _ -> true | _ -> false in
let () = assert (List.for_all atomic_p l) in
let l = List.map (fun (p, c) -> fold_cursor c p) l in
let () = assert (List.for_all ((=) p) l) in
()
let test_fold_pairs =
let l = [1; 2; 3; 4; 5] in
let p = fold_pairs l l [] (fun a b -> a :: b) in
let () = assert (List.length p = 25) in
let p = sort_uniq compare p in
let () = assert (List.length p = 25) in
()
(* test pattern & state *)
let tp =
let o = Kw, Oadd in
Bnr (o, Bnr (o, Atm Tmp, Atm Tmp),
Atm (Con 0L))
let ts =
{ id = 0
; seen = Atm Tmp
; point =
List.map snd
(List.filter (fun (p, _) -> p = Atm Tmp)
(peel tp ()))
}
let print_sm =
StateMap.iter (fun k s' ->
match k with
| K (o, sl, sr) ->
let top =
List.fold_left (fun top c ->
match c with
| Top r -> top ^ " " ^ r
| _ -> top) "" s'.point
in
Printf.printf
"(%s %d %d) -> %d%s\n"
(show_op o)
sl.id sr.id s'.id top)
let rules =
let oa = Kl, Oadd in
let om = Kl, Omul in
match `X64Addr with
(* ------------------------------- *)
| `X64Addr ->
let rule name pattern =
List.mapi (fun i pattern ->
{ name (* = Printf.sprintf "%s%d" name (i+1) *)
; pattern })
(ac_equiv pattern) in
(* o + b *)
rule "ob" (Bnr (oa, Atm Tmp, Atm AnyCon))
@ (* b + s * i *)
rule "bs" (Bnr (oa, Atm Tmp, Bnr (om, Atm (Con 4L), Atm Tmp)))
@ (* o + s * i *)
rule "os" (Bnr (oa, Atm AnyCon, Bnr (om, Atm (Con 4L), Atm Tmp)))
@ (* b + o + s * i *)
rule "bos" (Bnr (oa, Bnr (oa, Atm AnyCon, Atm Tmp), Bnr (om, Atm (Con 4L), Atm Tmp)))
(* ------------------------------- *)
| `Add3 ->
[ { name = "add"
; pattern = Bnr (oa, Atm Tmp, Bnr (oa, Atm Tmp, Atm Tmp)) } ] @
[ { name = "add"
; pattern = Bnr (oa, Bnr (oa, Atm Tmp, Atm Tmp), Atm Tmp) } ] @
[ { name = "mul"
; pattern = Bnr (om, Bnr (oa, Bnr (oa, Atm Tmp, Atm Tmp),
Atm Tmp),
Bnr (oa, Atm Tmp,
Bnr (oa, Atm Tmp, Atm Tmp))) } ]
let sl, sm = generate_table rules
let s n = List.find (fun {id; _} -> id = n) sl
let () = print_sm sm