The initial plan was to have one matcher per ac-variant, but that leads to way too much generated code. Instead, we can fuse ac variants of the rules and have a smarter matching algorithm to recover bound variables.
97 lines
2.8 KiB
OCaml
97 lines
2.8 KiB
OCaml
#use "match.ml"
|
|
|
|
let test_pattern_match =
|
|
let pm = pattern_match
|
|
and nm = fun x y -> not (pattern_match x y) in
|
|
begin
|
|
assert (nm (Atm Tmp) (Atm (Con 42L)));
|
|
assert (pm (Atm AnyCon) (Atm (Con 42L)));
|
|
assert (nm (Atm (Con 42L)) (Atm AnyCon));
|
|
assert (nm (Atm (Con 42L)) (Atm Tmp));
|
|
end
|
|
|
|
let test_peel =
|
|
let o = Kw, Oadd in
|
|
let p = Bnr (o, Bnr (o, Atm Tmp, Atm Tmp),
|
|
Atm (Con 42L)) in
|
|
let l = peel p () in
|
|
let () = assert (List.length l = 3) in
|
|
let atomic_p (p, _) =
|
|
match p with Atm _ -> true | _ -> false in
|
|
let () = assert (List.for_all atomic_p l) in
|
|
let l = List.map (fun (p, c) -> fold_cursor c p) l in
|
|
let () = assert (List.for_all ((=) p) l) in
|
|
()
|
|
|
|
let test_fold_pairs =
|
|
let l = [1; 2; 3; 4; 5] in
|
|
let p = fold_pairs l l [] (fun a b -> a :: b) in
|
|
let () = assert (List.length p = 25) in
|
|
let p = sort_uniq compare p in
|
|
let () = assert (List.length p = 25) in
|
|
()
|
|
|
|
(* test pattern & state *)
|
|
let tp =
|
|
let o = Kw, Oadd in
|
|
Bnr (o, Bnr (o, Atm Tmp, Atm Tmp),
|
|
Atm (Con 0L))
|
|
let ts =
|
|
{ id = 0
|
|
; seen = Atm Tmp
|
|
; point =
|
|
List.map snd
|
|
(List.filter (fun (p, _) -> p = Atm Tmp)
|
|
(peel tp ()))
|
|
}
|
|
|
|
let print_sm =
|
|
StateMap.iter (fun k s' ->
|
|
match k with
|
|
| K (o, sl, sr) ->
|
|
let top =
|
|
List.fold_left (fun top c ->
|
|
match c with
|
|
| Top r -> top ^ " " ^ r
|
|
| _ -> top) "" s'.point
|
|
in
|
|
Printf.printf
|
|
"(%s %d %d) -> %d%s\n"
|
|
(show_op o)
|
|
sl.id sr.id s'.id top)
|
|
|
|
let rules =
|
|
let oa = Kl, Oadd in
|
|
let om = Kl, Omul in
|
|
match `X64Addr with
|
|
(* ------------------------------- *)
|
|
| `X64Addr ->
|
|
let rule name pattern =
|
|
List.mapi (fun i pattern ->
|
|
{ name (* = Printf.sprintf "%s%d" name (i+1) *)
|
|
; pattern })
|
|
(ac_equiv pattern) in
|
|
(* o + b *)
|
|
rule "ob" (Bnr (oa, Atm Tmp, Atm AnyCon))
|
|
@ (* b + s * i *)
|
|
rule "bs" (Bnr (oa, Atm Tmp, Bnr (om, Atm (Con 4L), Atm Tmp)))
|
|
@ (* o + s * i *)
|
|
rule "os" (Bnr (oa, Atm AnyCon, Bnr (om, Atm (Con 4L), Atm Tmp)))
|
|
@ (* b + o + s * i *)
|
|
rule "bos" (Bnr (oa, Bnr (oa, Atm AnyCon, Atm Tmp), Bnr (om, Atm (Con 4L), Atm Tmp)))
|
|
(* ------------------------------- *)
|
|
| `Add3 ->
|
|
[ { name = "add"
|
|
; pattern = Bnr (oa, Atm Tmp, Bnr (oa, Atm Tmp, Atm Tmp)) } ] @
|
|
[ { name = "add"
|
|
; pattern = Bnr (oa, Bnr (oa, Atm Tmp, Atm Tmp), Atm Tmp) } ] @
|
|
[ { name = "mul"
|
|
; pattern = Bnr (om, Bnr (oa, Bnr (oa, Atm Tmp, Atm Tmp),
|
|
Atm Tmp),
|
|
Bnr (oa, Atm Tmp,
|
|
Bnr (oa, Atm Tmp, Atm Tmp))) } ]
|
|
|
|
|
|
let sl, sm = generate_table rules
|
|
let s n = List.find (fun {id; _} -> id = n) sl
|
|
let () = print_sm sm
|