modulo ac matching and more tests
This commit is contained in:
parent
24d1324424
commit
a374da3c2e
2 changed files with 390 additions and 65 deletions
353
tools/match.ml
353
tools/match.ml
|
@ -5,26 +5,36 @@ type op_base =
|
||||||
| Omul
|
| Omul
|
||||||
type op = cls * op_base
|
type op = cls * op_base
|
||||||
|
|
||||||
|
let commutative = function
|
||||||
|
| (_, (Oadd | Omul)) -> true
|
||||||
|
| (_, _) -> false
|
||||||
|
|
||||||
|
let associative = function
|
||||||
|
| (_, (Oadd | Omul)) -> true
|
||||||
|
| (_, _) -> false
|
||||||
|
|
||||||
type atomic_pattern =
|
type atomic_pattern =
|
||||||
| Any
|
| Tmp
|
||||||
|
| AnyCon
|
||||||
| Con of int64
|
| Con of int64
|
||||||
|
|
||||||
type pattern =
|
type pattern =
|
||||||
| Bnr of op * pattern * pattern
|
| Bnr of op * pattern * pattern
|
||||||
| Unr of op * pattern
|
|
||||||
| Atm of atomic_pattern
|
| Atm of atomic_pattern
|
||||||
|
| Var of string * atomic_pattern
|
||||||
|
|
||||||
let rec pattern_match p w =
|
let rec pattern_match p w =
|
||||||
match p with
|
match p with
|
||||||
| Atm (Any) -> true
|
| Var _ ->
|
||||||
| Atm (Con _) -> w = p
|
failwith "variable not allowed"
|
||||||
| Unr (o, pa) ->
|
| Atm (Tmp) ->
|
||||||
begin match w with
|
begin match w with
|
||||||
| Unr (o', wa) ->
|
| Atm (Con _ | AnyCon) -> false
|
||||||
o' = o &&
|
| _ -> true
|
||||||
pattern_match pa wa
|
|
||||||
| _ -> false
|
|
||||||
end
|
end
|
||||||
|
| Atm (Con _) -> w = p
|
||||||
|
| Atm (AnyCon) ->
|
||||||
|
not (pattern_match (Atm Tmp) w)
|
||||||
| Bnr (o, pl, pr) ->
|
| Bnr (o, pl, pr) ->
|
||||||
begin match w with
|
begin match w with
|
||||||
| Bnr (o', wl, wr) ->
|
| Bnr (o', wl, wr) ->
|
||||||
|
@ -34,75 +44,288 @@ let rec pattern_match p w =
|
||||||
| _ -> false
|
| _ -> false
|
||||||
end
|
end
|
||||||
|
|
||||||
let test_pattern_match =
|
type 'a cursor = (* a position inside a pattern *)
|
||||||
let pm = pattern_match
|
| Bnrl of op * 'a cursor * pattern
|
||||||
and nm = fun x y -> not (pattern_match x y)
|
| Bnrr of op * pattern * 'a cursor
|
||||||
and o = (Kw, Oadd) in
|
| Top of 'a
|
||||||
begin
|
|
||||||
assert (pm (Atm Any) (Atm (Con 42L)));
|
|
||||||
assert (pm (Atm Any) (Unr (o, Atm Any)));
|
|
||||||
assert (nm (Atm (Con 42L)) (Atm Any));
|
|
||||||
assert (pm (Unr (o, Atm Any))
|
|
||||||
(Unr (o, Atm (Con 42L))));
|
|
||||||
assert (nm (Unr (o, Atm Any))
|
|
||||||
(Unr ((Kl, Oadd), Atm (Con 42L))));
|
|
||||||
assert (nm (Unr (o, Atm Any))
|
|
||||||
(Bnr (o, Atm (Con 42L), Atm Any)));
|
|
||||||
end
|
|
||||||
|
|
||||||
type cursor = (* a position inside a pattern *)
|
|
||||||
| Bnrl of op * cursor * pattern
|
|
||||||
| Bnrr of op * pattern * cursor
|
|
||||||
| Unra of op * cursor
|
|
||||||
| Top
|
|
||||||
|
|
||||||
let rec fold_cursor c p =
|
let rec fold_cursor c p =
|
||||||
match c with
|
match c with
|
||||||
| Bnrl (o, c', p') -> fold_cursor c' (Bnr (o, p, p'))
|
| Bnrl (o, c', p') -> fold_cursor c' (Bnr (o, p, p'))
|
||||||
| Bnrr (o, p', c') -> fold_cursor c' (Bnr (o, p', p))
|
| Bnrr (o, p', c') -> fold_cursor c' (Bnr (o, p', p))
|
||||||
| Unra (o, c') -> fold_cursor c' (Unr (o, p))
|
| Top _ -> p
|
||||||
| Top -> p
|
|
||||||
|
|
||||||
let peel p =
|
let peel p x =
|
||||||
let once out (c, p) =
|
let once out (p, c) =
|
||||||
match p with
|
match p with
|
||||||
| Atm _ -> (c, p) :: out
|
| Var _ -> failwith "variable not allowed"
|
||||||
| Unr (o, pa) ->
|
| Atm _ -> (p, c) :: out
|
||||||
(Unra (o, c), pa) :: out
|
|
||||||
| Bnr (o, pl, pr) ->
|
| Bnr (o, pl, pr) ->
|
||||||
(Bnrl (o, c, pr), pl) ::
|
(pl, Bnrl (o, c, pr)) ::
|
||||||
(Bnrr (o, pl, c), pr) :: out
|
(pr, Bnrr (o, pl, c)) :: out
|
||||||
in
|
in
|
||||||
let rec go l =
|
let rec go l =
|
||||||
let l' = List.fold_left once [] l in
|
let l' = List.fold_left once [] l in
|
||||||
if List.length l' = List.length l
|
if List.length l' = List.length l
|
||||||
then l
|
then l
|
||||||
else go l'
|
else go l'
|
||||||
in go [(Top, p)]
|
in go [(p, Top x)]
|
||||||
|
|
||||||
let test_peel =
|
let fold_pairs l1 l2 ini f =
|
||||||
let o = Kw, Oadd in
|
let rec go acc = function
|
||||||
let p = Bnr (o, Bnr (o, Atm Any, Atm Any),
|
| [] -> acc
|
||||||
Atm (Con 42L)) in
|
| a :: l1' ->
|
||||||
let l = peel p in
|
go (List.fold_left
|
||||||
let () = assert (List.length l = 3) in
|
(fun acc b -> f (a, b) acc)
|
||||||
let atomic_p (_, p) =
|
acc l2) l1'
|
||||||
match p with Atm _ -> true | _ -> false in
|
in go ini l1
|
||||||
let () = assert (List.for_all atomic_p l) in
|
|
||||||
let l = List.map (fun (c, p) -> fold_cursor c p) l in
|
|
||||||
let () = assert (List.for_all ((=) p) l) in
|
|
||||||
()
|
|
||||||
|
|
||||||
(* we want to compute all the configurations we could
|
let iter_pairs l f =
|
||||||
* possibly be in when processing a block of instructions;
|
fold_pairs l l () (fun x () -> f x)
|
||||||
* to do so, we start with all the possible cursors for
|
|
||||||
* the list of patterns we are given, this will be our
|
type 'a state =
|
||||||
* main "initial state"; each constant (used in the
|
{ id: int
|
||||||
* patterns) also generates a state of its own
|
; seen: pattern
|
||||||
*
|
; point: ('a cursor) list }
|
||||||
* to create new states we can take pairs of states, and
|
|
||||||
* combine them with binary operations, we keep the
|
let rec binops side {point; _} =
|
||||||
* result if it is non-trivial (non-empty) and new (we
|
List.fold_left (fun res c ->
|
||||||
* have not seen this cursor combination yet); we can
|
match c, side with
|
||||||
* also do the same with unary operations
|
| Bnrl (o, c, r), `L -> ((o, c), r) :: res
|
||||||
* *)
|
| Bnrr (o, l, c), `R -> ((o, c), l) :: res
|
||||||
|
| _ -> res)
|
||||||
|
[] point
|
||||||
|
|
||||||
|
let group_by_fst l =
|
||||||
|
List.fast_sort (fun (a, _) (b, _) ->
|
||||||
|
compare a b) l |>
|
||||||
|
List.fold_left (fun (oo, l, res) (o', c) ->
|
||||||
|
match oo with
|
||||||
|
| None -> (Some o', [c], [])
|
||||||
|
| Some o when o = o' -> (oo, c :: l, res)
|
||||||
|
| Some o -> (Some o', [c], (o, l) :: res))
|
||||||
|
(None, [], []) |>
|
||||||
|
(function
|
||||||
|
| (None, _, _) -> []
|
||||||
|
| (Some o, l, res) -> (o, l) :: res)
|
||||||
|
|
||||||
|
let sort_uniq cmp l =
|
||||||
|
List.fast_sort cmp l |>
|
||||||
|
List.fold_left (fun (eo, l) e' ->
|
||||||
|
match eo with
|
||||||
|
| None -> (Some e', l)
|
||||||
|
| Some e ->
|
||||||
|
if cmp e e' = 0
|
||||||
|
then (eo, l)
|
||||||
|
else (Some e', e :: l)
|
||||||
|
) (None, []) |>
|
||||||
|
(function
|
||||||
|
| (None, _) -> []
|
||||||
|
| (Some e, l) -> List.rev (e :: l))
|
||||||
|
|
||||||
|
let normalize (point: ('a cursor) list) =
|
||||||
|
sort_uniq compare point
|
||||||
|
|
||||||
|
let nextbnr tmp s1 s2 =
|
||||||
|
let pm w (_, p) = pattern_match p w in
|
||||||
|
let o1 = binops `L s1 |>
|
||||||
|
List.filter (pm s2.seen) |>
|
||||||
|
List.map fst
|
||||||
|
and o2 = binops `R s2 |>
|
||||||
|
List.filter (pm s1.seen) |>
|
||||||
|
List.map fst
|
||||||
|
in
|
||||||
|
List.map (fun (o, l) ->
|
||||||
|
o,
|
||||||
|
{ id = 0
|
||||||
|
; seen = Bnr (o, s1.seen, s2.seen)
|
||||||
|
; point = normalize (l @ tmp)
|
||||||
|
}) (group_by_fst (o1 @ o2))
|
||||||
|
|
||||||
|
type p = string
|
||||||
|
|
||||||
|
module StateSet : sig
|
||||||
|
type set
|
||||||
|
val create: unit -> set
|
||||||
|
val add: set -> p state ->
|
||||||
|
[> `Added | `Found ] * p state
|
||||||
|
val iter: set -> (p state -> unit) -> unit
|
||||||
|
val elems: set -> (p state) list
|
||||||
|
end = struct
|
||||||
|
include Hashtbl.Make(struct
|
||||||
|
type t = p state
|
||||||
|
let equal s1 s2 = s1.point = s2.point
|
||||||
|
let hash s = Hashtbl.hash s.point
|
||||||
|
end)
|
||||||
|
type set =
|
||||||
|
{ h: int t
|
||||||
|
; mutable next_id: int }
|
||||||
|
let create () =
|
||||||
|
{ h = create 500; next_id = 1 }
|
||||||
|
let add set s =
|
||||||
|
(* delete the check later *)
|
||||||
|
assert (s.point = normalize s.point);
|
||||||
|
try
|
||||||
|
let id = find set.h s in
|
||||||
|
`Found, {s with id}
|
||||||
|
with Not_found -> begin
|
||||||
|
let id = set.next_id in
|
||||||
|
set.next_id <- id + 1;
|
||||||
|
add set.h s id;
|
||||||
|
`Added, {s with id}
|
||||||
|
end
|
||||||
|
let iter set f =
|
||||||
|
let f s id = f {s with id} in
|
||||||
|
iter f set.h
|
||||||
|
let elems set =
|
||||||
|
let res = ref [] in
|
||||||
|
iter set (fun s -> res := s :: !res);
|
||||||
|
!res
|
||||||
|
end
|
||||||
|
|
||||||
|
type table_key =
|
||||||
|
| K of op * p state * p state
|
||||||
|
|
||||||
|
module StateMap = Map.Make(struct
|
||||||
|
type t = table_key
|
||||||
|
let compare ka kb =
|
||||||
|
match ka, kb with
|
||||||
|
| K (o, sl, sr), K (o', sl', sr') ->
|
||||||
|
compare (o, sl.id, sr.id)
|
||||||
|
(o', sl'.id, sr'.id)
|
||||||
|
end)
|
||||||
|
|
||||||
|
type rule =
|
||||||
|
{ name: string
|
||||||
|
; pattern: pattern
|
||||||
|
(* TODO access pattern *)
|
||||||
|
}
|
||||||
|
|
||||||
|
let generate_table rl =
|
||||||
|
let states = StateSet.create () in
|
||||||
|
(* initialize states *)
|
||||||
|
let ground =
|
||||||
|
List.fold_left
|
||||||
|
(fun ini r ->
|
||||||
|
peel r.pattern r.name @ ini)
|
||||||
|
[] rl |>
|
||||||
|
group_by_fst
|
||||||
|
in
|
||||||
|
let find x d l =
|
||||||
|
try List.assoc x l with Not_found -> d in
|
||||||
|
let tmp = find (Atm Tmp) [] ground in
|
||||||
|
let con = find (Atm AnyCon) [] ground in
|
||||||
|
let () =
|
||||||
|
List.iter (fun (seen, l) ->
|
||||||
|
let point =
|
||||||
|
if pattern_match (Atm Tmp) seen
|
||||||
|
then normalize (tmp @ l)
|
||||||
|
else normalize (con @ l)
|
||||||
|
in
|
||||||
|
let s = {id = 0; seen; point} in
|
||||||
|
let flag, _ = StateSet.add states s in
|
||||||
|
assert (flag = `Added)
|
||||||
|
) ground
|
||||||
|
in
|
||||||
|
(* setup loop state *)
|
||||||
|
let map = ref StateMap.empty in
|
||||||
|
let map_add k s' =
|
||||||
|
map := StateMap.add k s' !map
|
||||||
|
in
|
||||||
|
let flag = ref `Added in
|
||||||
|
let flagmerge = function
|
||||||
|
| `Added -> flag := `Added
|
||||||
|
| _ -> ()
|
||||||
|
in
|
||||||
|
(* iterate until fixpoint *)
|
||||||
|
while !flag = `Added do
|
||||||
|
flag := `Stop;
|
||||||
|
let statel = StateSet.elems states in
|
||||||
|
iter_pairs statel (fun (sl, sr) ->
|
||||||
|
nextbnr tmp sl sr |>
|
||||||
|
List.iter (fun (o, s') ->
|
||||||
|
let flag', s' =
|
||||||
|
StateSet.add states s' in
|
||||||
|
flagmerge flag';
|
||||||
|
map_add (K (o, sl, sr)) s';
|
||||||
|
));
|
||||||
|
done;
|
||||||
|
(StateSet.elems states, !map)
|
||||||
|
|
||||||
|
let intersperse x l =
|
||||||
|
let rec go left right out =
|
||||||
|
let out =
|
||||||
|
(List.rev left @ [x] @ right) ::
|
||||||
|
out in
|
||||||
|
match right with
|
||||||
|
| x :: right' ->
|
||||||
|
go (x :: left) right' out
|
||||||
|
| [] -> out
|
||||||
|
in go [] l []
|
||||||
|
|
||||||
|
let rec permute = function
|
||||||
|
| [] -> [[]]
|
||||||
|
| x :: l ->
|
||||||
|
List.concat (List.map
|
||||||
|
(intersperse x) (permute l))
|
||||||
|
|
||||||
|
(* build all binary trees with ordered
|
||||||
|
* leaves l *)
|
||||||
|
let rec bins build l =
|
||||||
|
let rec go l r out =
|
||||||
|
match r with
|
||||||
|
| [] -> out
|
||||||
|
| x :: r' ->
|
||||||
|
go (l @ [x]) r'
|
||||||
|
(fold_pairs
|
||||||
|
(bins build l)
|
||||||
|
(bins build r)
|
||||||
|
out (fun (l, r) out ->
|
||||||
|
build l r :: out))
|
||||||
|
in
|
||||||
|
match l with
|
||||||
|
| [] -> []
|
||||||
|
| [x] -> [x]
|
||||||
|
| x :: l -> go [x] l []
|
||||||
|
|
||||||
|
let products l ini f =
|
||||||
|
let rec go acc la = function
|
||||||
|
| [] -> f (List.rev la) acc
|
||||||
|
| xs :: l ->
|
||||||
|
List.fold_left (fun acc x ->
|
||||||
|
go acc (x :: la) l)
|
||||||
|
acc xs
|
||||||
|
in go ini [] l
|
||||||
|
|
||||||
|
(* combinatorial nuke... *)
|
||||||
|
let rec ac_equiv =
|
||||||
|
let rec alevel o = function
|
||||||
|
| Bnr (o', l, r) when o' = o ->
|
||||||
|
alevel o l @ alevel o r
|
||||||
|
| x -> [x]
|
||||||
|
in function
|
||||||
|
| Bnr (o, _, _) as p
|
||||||
|
when associative o ->
|
||||||
|
products
|
||||||
|
(List.map ac_equiv (alevel o p)) []
|
||||||
|
(fun choice out ->
|
||||||
|
List.map
|
||||||
|
(bins (fun l r -> Bnr (o, l, r)))
|
||||||
|
(if commutative o
|
||||||
|
then permute choice
|
||||||
|
else [choice]) |>
|
||||||
|
List.concat |>
|
||||||
|
(fun l -> List.rev_append l out))
|
||||||
|
| Bnr (o, l, r)
|
||||||
|
when commutative o ->
|
||||||
|
fold_pairs
|
||||||
|
(ac_equiv l) (ac_equiv r) []
|
||||||
|
(fun (l, r) out ->
|
||||||
|
Bnr (o, l, r) ::
|
||||||
|
Bnr (o, r, l) :: out)
|
||||||
|
| Bnr (o, l, r) ->
|
||||||
|
fold_pairs
|
||||||
|
(ac_equiv l) (ac_equiv r) []
|
||||||
|
(fun (l, r) out ->
|
||||||
|
Bnr (o, l, r) :: out)
|
||||||
|
| x -> [x]
|
||||||
|
|
102
tools/match_test.ml
Normal file
102
tools/match_test.ml
Normal file
|
@ -0,0 +1,102 @@
|
||||||
|
#use "match.ml"
|
||||||
|
|
||||||
|
let test_pattern_match =
|
||||||
|
let pm = pattern_match
|
||||||
|
and nm = fun x y -> not (pattern_match x y) in
|
||||||
|
begin
|
||||||
|
assert (nm (Atm Tmp) (Atm (Con 42L)));
|
||||||
|
assert (pm (Atm AnyCon) (Atm (Con 42L)));
|
||||||
|
assert (nm (Atm (Con 42L)) (Atm AnyCon));
|
||||||
|
assert (nm (Atm (Con 42L)) (Atm Tmp));
|
||||||
|
end
|
||||||
|
|
||||||
|
let test_peel =
|
||||||
|
let o = Kw, Oadd in
|
||||||
|
let p = Bnr (o, Bnr (o, Atm Tmp, Atm Tmp),
|
||||||
|
Atm (Con 42L)) in
|
||||||
|
let l = peel p () in
|
||||||
|
let () = assert (List.length l = 3) in
|
||||||
|
let atomic_p (p, _) =
|
||||||
|
match p with Atm _ -> true | _ -> false in
|
||||||
|
let () = assert (List.for_all atomic_p l) in
|
||||||
|
let l = List.map (fun (p, c) -> fold_cursor c p) l in
|
||||||
|
let () = assert (List.for_all ((=) p) l) in
|
||||||
|
()
|
||||||
|
|
||||||
|
let test_fold_pairs =
|
||||||
|
let l = [1; 2; 3; 4; 5] in
|
||||||
|
let p = fold_pairs l l [] (fun a b -> a :: b) in
|
||||||
|
let () = assert (List.length p = 25) in
|
||||||
|
let p = sort_uniq compare p in
|
||||||
|
let () = assert (List.length p = 25) in
|
||||||
|
()
|
||||||
|
|
||||||
|
(* test pattern & state *)
|
||||||
|
let tp =
|
||||||
|
let o = Kw, Oadd in
|
||||||
|
Bnr (o, Bnr (o, Atm Tmp, Atm Tmp),
|
||||||
|
Atm (Con 0L))
|
||||||
|
let ts =
|
||||||
|
{ id = 0
|
||||||
|
; seen = Atm Tmp
|
||||||
|
; point =
|
||||||
|
List.map snd
|
||||||
|
(List.filter (fun (p, _) -> p = Atm Tmp)
|
||||||
|
(peel tp ()))
|
||||||
|
}
|
||||||
|
|
||||||
|
let print_sm =
|
||||||
|
let op_str (k, o) =
|
||||||
|
Printf.sprintf "%s%s"
|
||||||
|
(match o with
|
||||||
|
| Oadd -> "add"
|
||||||
|
| Osub -> "sub"
|
||||||
|
| Omul -> "mul")
|
||||||
|
(match k with
|
||||||
|
| Kw -> "w"
|
||||||
|
| Kl -> "l"
|
||||||
|
| Ks -> "s"
|
||||||
|
| Kd -> "d")
|
||||||
|
in
|
||||||
|
StateMap.iter (fun k s' ->
|
||||||
|
match k with
|
||||||
|
| K (o, sl, sr) ->
|
||||||
|
Printf.printf
|
||||||
|
"(%s %d %d) -> %d\n"
|
||||||
|
(op_str o)
|
||||||
|
sl.id sr.id s'.id
|
||||||
|
)
|
||||||
|
|
||||||
|
let address_rules =
|
||||||
|
let oa = Kl, Oadd in
|
||||||
|
let om = Kl, Omul in
|
||||||
|
let rule name pattern = { name; pattern; } in
|
||||||
|
(* o + b *)
|
||||||
|
[ rule "ob1" (Bnr (oa, Atm Tmp, Atm AnyCon))
|
||||||
|
; rule "ob2" (Bnr (oa, Atm AnyCon, Atm Tmp))
|
||||||
|
|
||||||
|
(* b + s * i *)
|
||||||
|
; rule "bs1" (Bnr (oa, Atm Tmp, Bnr (om, Atm AnyCon, Atm Tmp)))
|
||||||
|
; rule "bs2" (Bnr (oa, Atm Tmp, Bnr (om, Atm Tmp, Atm AnyCon)))
|
||||||
|
; rule "bs3" (Bnr (oa, Bnr (om, Atm AnyCon, Atm Tmp), Atm Tmp))
|
||||||
|
; rule "bs4" (Bnr (oa, Bnr (om, Atm Tmp, Atm AnyCon), Atm Tmp))
|
||||||
|
|
||||||
|
(* o + s * i *)
|
||||||
|
; rule "os1" (Bnr (oa, Atm AnyCon, Bnr (om, Atm AnyCon, Atm Tmp)))
|
||||||
|
; rule "os2" (Bnr (oa, Atm AnyCon, Bnr (om, Atm Tmp, Atm AnyCon)))
|
||||||
|
; rule "os3" (Bnr (oa, Bnr (om, Atm AnyCon, Atm Tmp), Atm AnyCon))
|
||||||
|
; rule "os4" (Bnr (oa, Bnr (om, Atm Tmp, Atm AnyCon), Atm AnyCon))
|
||||||
|
]
|
||||||
|
|
||||||
|
(*
|
||||||
|
let sl, sm = generate_table address_rules
|
||||||
|
let s n = List.find (fun {id; _} -> id = n) sl
|
||||||
|
let () = print_sm sm
|
||||||
|
*)
|
||||||
|
|
||||||
|
let tp0 =
|
||||||
|
let o = Kw, Oadd in
|
||||||
|
Bnr (o, Atm Tmp, Atm (Con 0L))
|
||||||
|
let tp1 =
|
||||||
|
let o = Kw, Oadd in
|
||||||
|
Bnr (o, tp0, Atm (Con 1L))
|
Loading…
Add table
Reference in a new issue