libqbe/tools/mgen/match.ml

652 lines
16 KiB
OCaml
Raw Normal View History

type cls = Kw | Kl | Ks | Kd
type op_base =
| Oadd
| Osub
| Omul
| Oor
| Oshl
| Oshr
type op = cls * op_base
let op_bases =
[Oadd; Osub; Omul; Oor; Oshl; Oshr]
let commutative = function
| (_, (Oadd | Omul | Oor)) -> true
| (_, _) -> false
let associative = function
| (_, (Oadd | Omul | Oor)) -> true
| (_, _) -> false
type atomic_pattern =
| Tmp
| AnyCon
| Con of int64
(* Tmp < AnyCon < Con k *)
type pattern =
| Bnr of op * pattern * pattern
| Atm of atomic_pattern
| Var of string * atomic_pattern
let is_atomic = function
| (Atm _ | Var _) -> true
| _ -> false
let show_op_base o =
match o with
| Oadd -> "add"
| Osub -> "sub"
| Omul -> "mul"
| Oor -> "or"
| Oshl -> "shl"
| Oshr -> "shr"
let show_op (k, o) =
show_op_base o ^
(match k with
| Kw -> "w"
| Kl -> "l"
| Ks -> "s"
| Kd -> "d")
let rec show_pattern p =
match p with
| Atm Tmp -> "%"
| Atm AnyCon -> "$"
| Atm (Con n) -> Int64.to_string n
| Var (v, p) ->
show_pattern (Atm p) ^ "'" ^ v
| Bnr (o, pl, pr) ->
"(" ^ show_op o ^
" " ^ show_pattern pl ^
" " ^ show_pattern pr ^ ")"
let get_atomic p =
match p with
| (Atm a | Var (_, a)) -> Some a
| _ -> None
let rec pattern_match p w =
match p with
| Var (_, p) ->
pattern_match (Atm p) w
| Atm Tmp ->
begin match get_atomic w with
| Some (Con _ | AnyCon) -> false
| _ -> true
end
| Atm (Con _) -> w = p
| Atm (AnyCon) ->
not (pattern_match (Atm Tmp) w)
| Bnr (o, pl, pr) ->
begin match w with
| Bnr (o', wl, wr) ->
o' = o &&
pattern_match pl wl &&
pattern_match pr wr
| _ -> false
end
type +'a cursor = (* a position inside a pattern *)
| Bnrl of op * 'a cursor * pattern
| Bnrr of op * pattern * 'a cursor
| Top of 'a
let rec fold_cursor c p =
match c with
| Bnrl (o, c', p') -> fold_cursor c' (Bnr (o, p, p'))
| Bnrr (o, p', c') -> fold_cursor c' (Bnr (o, p', p))
| Top _ -> p
let peel p x =
let once out (p, c) =
match p with
| Var (_, p) -> (Atm p, c) :: out
| Atm _ -> (p, c) :: out
| Bnr (o, pl, pr) ->
(pl, Bnrl (o, c, pr)) ::
(pr, Bnrr (o, pl, c)) :: out
in
let rec go l =
let l' = List.fold_left once [] l in
if List.length l' = List.length l
then l'
else go l'
in go [(p, Top x)]
let fold_pairs l1 l2 ini f =
let rec go acc = function
| [] -> acc
| a :: l1' ->
go (List.fold_left
(fun acc b -> f (a, b) acc)
acc l2) l1'
in go ini l1
let iter_pairs l f =
fold_pairs l l () (fun x () -> f x)
let inverse l =
List.map (fun (a, b) -> (b, a)) l
type 'a state =
{ id: int
; seen: pattern
; point: ('a cursor) list }
let rec binops side {point; _} =
List.filter_map (fun c ->
match c, side with
| Bnrl (o, c, r), `L -> Some ((o, c), r)
| Bnrr (o, l, c), `R -> Some ((o, c), l)
| _ -> None)
point
let group_by_fst l =
List.fast_sort (fun (a, _) (b, _) ->
compare a b) l |>
List.fold_left (fun (oo, l, res) (o', c) ->
match oo with
| None -> (Some o', [c], [])
| Some o when o = o' -> (oo, c :: l, res)
| Some o -> (Some o', [c], (o, l) :: res))
(None, [], []) |>
(function
| (None, _, _) -> []
| (Some o, l, res) -> (o, l) :: res)
let sort_uniq cmp l =
List.fast_sort cmp l |>
List.fold_left (fun (eo, l) e' ->
match eo with
| None -> (Some e', l)
| Some e when cmp e e' = 0 -> (eo, l)
| Some e -> (Some e', e :: l))
(None, []) |>
(function
| (None, _) -> []
| (Some e, l) -> List.rev (e :: l))
let setify l =
sort_uniq compare l
let normalize (point: ('a cursor) list) =
setify point
let next_binary tmp s1 s2 =
let pm w (_, p) = pattern_match p w in
let o1 = binops `L s1 |>
List.filter (pm s2.seen) |>
List.map fst in
let o2 = binops `R s2 |>
List.filter (pm s1.seen) |>
List.map fst in
List.map (fun (o, l) ->
o,
{ id = -1
; seen = Bnr (o, s1.seen, s2.seen)
; point = normalize (l @ tmp) })
(group_by_fst (o1 @ o2))
type p = string
module StateSet : sig
type t
val create: unit -> t
val add: t -> p state ->
[> `Added | `Found ] * p state
val iter: t -> (p state -> unit) -> unit
val elems: t -> (p state) list
end = struct
open Hashtbl.Make(struct
type t = p state
let equal s1 s2 = s1.point = s2.point
let hash s = Hashtbl.hash s.point
end)
type nonrec t =
{ h: int t
; mutable next_id: int }
let create () =
{ h = create 500; next_id = 0 }
let add set s =
assert (s.point = normalize s.point);
try
let id = find set.h s in
`Found, {s with id}
with Not_found -> begin
let id = set.next_id in
set.next_id <- id + 1;
add set.h s id;
`Added, {s with id}
end
let iter set f =
let f s id = f {s with id} in
iter f set.h
let elems set =
let res = ref [] in
iter set (fun s -> res := s :: !res);
!res
end
type table_key =
| K of op * p state * p state
module StateMap = struct
include Map.Make(struct
type t = table_key
let compare ka kb =
match ka, kb with
| K (o, sl, sr), K (o', sl', sr') ->
compare (o, sl.id, sr.id)
(o', sl'.id, sr'.id)
end)
let invert n sm =
let rmap = Array.make n [] in
iter (fun k {id; _} ->
match k with
| K (o, sl, sr) ->
rmap.(id) <-
(o, (sl.id, sr.id)) :: rmap.(id)
) sm;
Array.map group_by_fst rmap
let by_ops sm =
fold (fun tk s ops ->
match tk with
| K (op, l, r) ->
(op, ((l.id, r.id), s.id)) :: ops)
sm [] |> group_by_fst
end
type rule =
{ name: string
; vars: string list
; pattern: pattern }
let generate_table rl =
let states = StateSet.create () in
let rl =
(* these atomic patterns must occur in
* rules so that we are able to number
* all possible refs *)
[ { name = "$"; vars = []
; pattern = Atm AnyCon }
; { name = "%"; vars = []
; pattern = Atm Tmp } ] @ rl
in
(* initialize states *)
let ground =
List.concat_map
(fun r -> peel r.pattern r.name) rl |>
group_by_fst
in
let tmp = List.assoc (Atm Tmp) ground in
let con = List.assoc (Atm AnyCon) ground in
let atoms = ref [] in
let () =
List.iter (fun (seen, l) ->
let point =
if pattern_match (Atm Tmp) seen
then normalize (tmp @ l)
else normalize (con @ l)
in
let s = {id = -1; seen; point} in
let _, s = StateSet.add states s in
match get_atomic seen with
| Some atm -> atoms := (atm, s) :: !atoms
| None -> ()
) ground
in
(* setup loop state *)
let map = ref StateMap.empty in
let map_add k s' =
map := StateMap.add k s' !map
in
let flag = ref `Added in
let flagmerge = function
| `Added -> flag := `Added
| _ -> ()
in
(* iterate until fixpoint *)
while !flag = `Added do
flag := `Stop;
let statel = StateSet.elems states in
iter_pairs statel (fun (sl, sr) ->
next_binary tmp sl sr |>
List.iter (fun (o, s') ->
let flag', s' =
StateSet.add states s' in
flagmerge flag';
map_add (K (o, sl, sr)) s';
));
done;
let states =
StateSet.elems states |>
List.sort (fun s s' -> compare s.id s'.id) |>
Array.of_list
in
(states, !atoms, !map)
let intersperse x l =
let rec go left right out =
let out =
(List.rev left @ [x] @ right) ::
out in
match right with
| x :: right' ->
go (x :: left) right' out
| [] -> out
in go [] l []
let rec permute = function
| [] -> [[]]
| x :: l ->
List.concat (List.map
(intersperse x) (permute l))
(* build all binary trees with ordered
* leaves l *)
let rec bins build l =
let rec go l r out =
match r with
| [] -> out
| x :: r' ->
go (l @ [x]) r'
(fold_pairs
(bins build l)
(bins build r)
out (fun (l, r) out ->
build l r :: out))
in
match l with
| [] -> []
| [x] -> [x]
| x :: l -> go [x] l []
let products l ini f =
let rec go acc la = function
| [] -> f (List.rev la) acc
| xs :: l ->
List.fold_left (fun acc x ->
go acc (x :: la) l)
acc xs
in go ini [] l
(* combinatorial nuke... *)
let rec ac_equiv =
let rec alevel o = function
| Bnr (o', l, r) when o' = o ->
alevel o l @ alevel o r
| x -> [x]
in function
| Bnr (o, _, _) as p
when associative o ->
products
(List.map ac_equiv (alevel o p)) []
(fun choice out ->
List.concat_map
(bins (fun l r -> Bnr (o, l, r)))
(if commutative o
then permute choice
else [choice]) @ out)
| Bnr (o, l, r)
when commutative o ->
fold_pairs
(ac_equiv l) (ac_equiv r) []
(fun (l, r) out ->
Bnr (o, l, r) ::
Bnr (o, r, l) :: out)
| Bnr (o, l, r) ->
fold_pairs
(ac_equiv l) (ac_equiv r) []
(fun (l, r) out ->
Bnr (o, l, r) :: out)
| x -> [x]
module Action: sig
type node =
| Switch of (int * t) list
| Push of bool * t
| Pop of t
| Set of string * t
| Stop
and t = private
{ id: int; node: node }
val equal: t -> t -> bool
val size: t -> int
val stop: t
val mk_push: sym:bool -> t -> t
val mk_pop: t -> t
val mk_set: string -> t -> t
val mk_switch: int list -> (int -> t) -> t
val pp: Format.formatter -> t -> unit
end = struct
type node =
| Switch of (int * t) list
| Push of bool * t
| Pop of t
| Set of string * t
| Stop
and t =
{ id: int; node: node }
let equal a a' = a.id = a'.id
let size a =
let seen = Hashtbl.create 10 in
let rec node_size = function
| Switch l ->
List.fold_left
(fun n (_, a) -> n + size a) 0 l
| (Push (_, a) | Pop a | Set (_, a)) ->
size a
| Stop -> 0
and size {id; node} =
if Hashtbl.mem seen id
then 0
else begin
Hashtbl.add seen id ();
1 + node_size node
end
in
size a
let mk =
let hcons = Hashtbl.create 100 in
let fresh = ref 0 in
fun node ->
let id =
try Hashtbl.find hcons node
with Not_found ->
let id = !fresh in
Hashtbl.add hcons node id;
fresh := id + 1;
id
in
{id; node}
let stop = mk Stop
let mk_push ~sym a = mk (Push (sym, a))
let mk_pop a =
match a.node with
| Stop -> a
| _ -> mk (Pop a)
let mk_set v a = mk (Set (v, a))
let mk_switch ids f =
match List.map f ids with
| [] -> failwith "empty switch";
| c :: cs as cases ->
if List.for_all (equal c) cs then c
else
let cases = List.combine ids cases in
mk (Switch cases)
open Format
let rec pp_node fmt = function
| Switch l ->
fprintf fmt "@[<v>@[<v2>switch{";
let pp_case (c, a) =
let pp_sep fmt () = fprintf fmt "," in
fprintf fmt "@,@[<2>→%a:@ @[%a@]@]"
(pp_print_list ~pp_sep pp_print_int)
c pp a
in
inverse l |> group_by_fst |> inverse |>
List.iter pp_case;
fprintf fmt "@]@,}@]"
| Push (true, a) -> fprintf fmt "pushsym@ %a" pp a
| Push (false, a) -> fprintf fmt "push@ %a" pp a
| Pop a -> fprintf fmt "pop@ %a" pp a
| Set (v, a) -> fprintf fmt "set(%s)@ %a" v pp a
| Stop -> fprintf fmt ""
and pp fmt a = pp_node fmt a.node
end
(* a state is commutative if (a op b) enters
* it iff (b op a) enters it as well *)
let symmetric rmap id =
List.for_all (fun (_, l) ->
let l1, l2 =
List.filter (fun (a, b) -> a <> b) l |>
List.partition (fun (a, b) -> a < b)
in
setify l1 = setify (inverse l2))
rmap.(id)
(* left-to-right matching of a set of patterns;
* may raise if there is no lr matcher for the
* input rule *)
let lr_matcher statemap states rules name =
let rmap =
let nstates = Array.length states in
StateMap.invert nstates statemap
in
let exception Stuck in
(* the list of ids represents a class of terms
* whose root ends up being labelled with one
* such id; the gen function generates a matcher
* that will, given any such term, assign values
* for the Var nodes of one pattern in pats *)
let rec gen
: 'a. int list -> (pattern * 'a) list
-> (int -> (pattern * 'a) list -> Action.t)
-> Action.t
= fun ids pats k ->
Action.mk_switch (setify ids) @@ fun id_top ->
let sym = symmetric rmap id_top in
let id_ops =
if sym then
let ordered (a, b) = a <= b in
List.map (fun (o, l) ->
(o, List.filter ordered l))
rmap.(id_top)
else rmap.(id_top)
in
(* consider only the patterns that are
* compatible with the current id *)
let atm_pats, bin_pats =
List.filter (function
| Bnr (o, _, _), _ ->
List.exists
(fun (o', _) -> o' = o)
id_ops
| _ -> true) pats |>
List.partition
(fun (pat, _) -> is_atomic pat)
in
try
if bin_pats = [] then raise Stuck;
let pats_l =
List.map (function
| (Bnr (o, l, r), x) ->
(l, (o, x, r))
| _ -> assert false)
bin_pats
and pats_r =
List.map (fun (l, (o, x, r)) ->
(r, (o, l, x)))
and patstop =
List.map (fun (r, (o, l, x)) ->
(Bnr (o, l, r), x))
in
let id_pairs = List.concat_map snd id_ops in
let ids_l = List.map fst id_pairs
and ids_r id_left =
List.filter_map (fun (l, r) ->
if l = id_left then Some r else None)
id_pairs
in
(* match the left arm *)
Action.mk_push ~sym
(gen ids_l pats_l
@@ fun lid pats ->
(* then the right arm, considering
* only the remaining possible
* patterns and knowing that the
* left arm was numbered 'lid' *)
Action.mk_pop
(gen (ids_r lid) (pats_r pats)
@@ fun _rid pats ->
(* continue with the parent *)
k id_top (patstop pats)))
with Stuck ->
let atm_pats =
let seen = states.(id_top).seen in
List.filter (fun (pat, _) ->
pattern_match pat seen) atm_pats
in
if atm_pats = [] then raise Stuck else
let vars =
List.filter_map (function
| (Var (v, _), _) -> Some v
| _ -> None) atm_pats |> setify
in
match vars with
| [] -> k id_top atm_pats
| [v] -> Action.mk_set v (k id_top atm_pats)
| _ -> failwith "ambiguous var match"
in
(* generate a matcher for the rule *)
let ids_top =
Array.to_list states |>
List.filter_map (fun {id; point = p; _} ->
if List.exists ((=) (Top name)) p then
Some id
else None)
in
let rec filter_dups pats =
match pats with
| p :: pats ->
if List.exists (pattern_match p) pats
then filter_dups pats
else p :: filter_dups pats
| [] -> []
in
let pats_top =
List.filter_map (fun r ->
if r.name = name then
Some r.pattern
else None) rules |>
filter_dups |>
List.map (fun p -> (p, ()))
in
gen ids_top pats_top (fun _ pats ->
assert (pats <> []);
Action.stop)
type numberer =
{ atoms: (atomic_pattern * p state) list
; statemap: p state StateMap.t
; states: p state array
; mutable ops: op list
(* memoizes the list of possible operations
* according to the statemap *) }
let make_numberer sa am sm =
{ atoms = am
; states = sa
; statemap = sm
; ops = [] }
let atom_state n atm =
List.assoc atm n.atoms